
Surviving in a Hostile Environment
Hans Wegener

Credit Suisse Financial Services, Postfach 100, 8070 Zürich, Switzerland
Phone: +41 (1) 334 66 51, Fax: +41 (1) 334 50 60, Mail: hans.wegener@csfs.com

Abstract: The IT departments of large enterprises usually enforce more rigid and formal develop-
ment processes than Internet startups. Adopting a lightweight development process can become
very difficult in such an environment. The reasons are both structural and cultural, and we describe
how they can be addressed.

1. Introduction
Not all of us are born lucky. Extreme Programming
is a development process that sometimes meets with
resistance and cultural incompatibilites that are dif-
ficult to surmount. Especially in large enterprises,
where rigid and formal processes prevail, it can be
very hard to practice XP. Stilly trying to adopt it
becomes tedious, frustrating, exhausting, because
after all, we all believe in XP, don't we? The only
conclusion seems to be that it is time to quit. As Jim
Highsmith put it at OOPSLA 2000: "If your com-
pany has problems recruiting [or retaining] fabulous
people, then it's because your company sucks." The
largest are usually also among the most risk-averse
and seem to be the last likely to adopt XP.

1.1. My Way Or the Highway?
While it is easy to look down in pity at sad figures
who do not quit and keep getting frustrated, some
thought should be spent on the question: "Do we
really have to be so strict about the issue? My way
or the highway?" It is desirable to be practicing XP
in its pure form. But during the transition to XP it is
sometimes difficult (if not dangerous) to make strict
and strong statements. For example, managers who
are confronted in such a way usually claim that it is
"impossible" to work like that on their particular
project. There is a legion of reasons you can find to
dismiss proposals for practicing XP. Fundamental-
ism won't help if you want to change the way the
world is turning. How can on make a step in that
direction while staying faithful to most of XP's
ideas?

I work in a large Swiss bank. According to a cynical
remark from some extreme forerunner, my work
environment could be paraphrased as the XP anti-

christ. Our team designs and implements the
metalevel architecture for the bank's data warehouse.
We started off a year ago with the task to establish
metadata management by means of an (object-
oriented) service architecture, web-based tools and
associated management processes. There were no
clear specifications around, just ideas and visions. It
was the epitome of an extreme project [1]:

• small team,

• unclear technological basis,

• unclear requirements,

• time pressure.

On the other hand, what we also found was a stan-
dard development process as known from the late
80's: big design up front, time and scope are fixed in
advance, etc. The process for bringing software into
production is geared towards host-based applica-
tions, which makes it relatively tedious for us. The
situation was complicated by the fact that we did not
have just one customer, but two handful of them.
They were distributed all over the bank and could be
found both in IT and banking. In a word, this can be
considered an environment hostile to XP. My way or
the highway?

1.2. Success Is Possible, Even In a Hostile
Environment

After having successfully brought four releases into
production, we can confirm it was an unnerving and
at times frustrating experience. However, we also
clearly succeeded, since we:

• completed on time (no deadline slipped),

• got rapid feedback (one release each quarter),

• delivered high quality (so far no bug reports).



All releases were perfectly compliant with the com-
pany’s regulations. We stayed faithful to the bank’s
process.

Our situation might not be representative of all de-
velopment projects in large enterprises, but we have
made our transition towards XP even in the face of
adversities. Therefore, we would like to share some
of our experiences.

2. Forces Working Against XP
Know the enemy. Understand that even in a beau-
rocracy there is a reason for everything that is
done—even if it is as stupid as you can imagine.
Getting behind the scenes and understanding why
things work the way they do is the first step to get
around them. Here's some of them.

2.1. Schedules and Budgets
Schedules and budgets are ubiquitous in large enter-
prises. It is difficult (if not impossible) to measure
success and profitability of IT projects in a transpar-
ent and meaningful manner. Budgets are used to
restrict the damage you can do, while schedules are
used to determine what you are obliged to do. The
two work together to control the direction the or-
ganisation is taking.

The interesting observation about schedules in IT is
that once they are defined, it is rare for people to
control fulfillment as long as the customer is happy.
One reason is culture: project retrospects are not a
common practice. Another reason is complexity:
how do you define success if not by means of cus-
tomer satisfaction? Most projects with XP charac-
teristics do not define metrics for measuring the de-
gree of goal fulfillment. Interestingly, meeting
budget requirements can and is indeed measured.

We further define schedule as scope delivered within
a timeframe. The schedule says what is delivered
when. Unfortunately this contradicts typical XP
project characteristics: you set time or scope, but not
both.

Again, time can be measured quite nicely, so it is not
uncommon that the customer enters your office on
deadline day asking: "Where's my new release?"
However, it is less common that he or she enters the
room asking: "Did you change the push button in
dialog Foobar to go gray instead of blue?" If the
customer asks that, it is usually because he or she
really cares about that requirement.

2.2. Division of Labour
For large organisations to scale properly, division of
labour is almost unavoidable. So far people have not
come up with a different yet scalable way of organ-
izing collaboration.

In large IT organisations we usually find (at least)
development and production support departments.
Development produces software (design, imple-
mentation, test) that is later operated by production
support (surveillance, administration). To ensure the
quality of the delivered software, a change control
board controls changes to productive systems hap-
pen by means of a formal test procedure. Usually
this procedure is tedious and involves (a lot of) red
tape, mostly paper.

The observation here is that paper is taken as sort of
a proof of quality. In the absence of an understand-
ing of the software (which is a consequence of the
division of labour), change control boards (have to)
trust procedures more than they trust statements.
This leads to an interesting phenomenon: as long as
you follow the procedure, it is alright to "shoot your-
self in the foot". It is rare that measurable metrics
are applied (for example, test coverage).

3. Transitioning to XP in the Face
of Adversities

XP is built on a value system [2]. This means that
given an environment the values (e.g., communica-
tion, simplicity, feedback, or courage) must be inter-
preted to achieve a set of goals (e.g., quality), which
is fixed. Ultimately we would like to gain as much
flexibility as possible to widen the range of inter-
pretations we can give to the values.

As we have seen, large companies provide a less
then ideal environment for practicing the values,
especially feedback. Based on our experience we
describe in idiomatic form how to deal with such
adversity.

3.1. Do As The Romans Do
Follow the prescribed procedures while staying
faithful to your values.

3.1.1. Motivation

I spent my vacation on Australia's Surf Coast re-
cently. Many of the beaches we visited had signs put
up to warn you before strong currents. If you were
caught by the "rip" and dragged off shore, so went
the explanation, you should not try to fight against it



but swim sideways. The rationale behind this is that
a human being is way to weak for being successful
against the current. Therefore, it is wise to hope for
stiller waters at the side and be able to swim back to
the shore there.

A large organisation is just too big and you are not
likely to be in charge of everything. It resists change
for a host of reasons like culture, investment protec-
tion, politics, etc. Trying to change the overall setup
means years of work, not days. Therefore, for the
duration of your project you can assume it to remain
stable. Following the procedures is only sane if you
want to optimize your chances of survival.

3.1.2. Forces

• Procedures try to achieve a certain goal; usually
this goal is also your own, only the means are
different.

• Following meaningless procedures is not only
unhealthy; it can even be unprofessional.

• You have some leeway in interpreting the pro-
cedures so that they make more sense to you.

3.1.3. Implementation

Try to follow the defined procedures as close as pos-
sible. Use the language you are expected to use. Do
not try to be smart and tell other people what is rea-
sonable. Adapt your process to the predefined one,
not the other way round.

3.1.4. Example

In our project we were obliged to write test scripts. It
is used by end users during acceptance testing to
make sure the software complies with the formulated
business requirements. The data staging tool we in-
tegrated into metadata management was a black box.
We could not provide test data for the end users to
check the results for sanity. This argument did not
meet with sympathy by the change control people.
However, they accepted the following procedure:
test results were not checked for absolute values, but
the tests were based on consistency rules: if a data
staging session execution failed, the archive of ses-
sion executions had to contain this particular execu-
tion, etc.

3.1.5. Relations

Even if you Do As the Romans Do, you are still free
to Explore the Limits of the environment you work
in.

3.2. Demand Precision or Be Vague
Insist on clearly defined requirements or do not
commit to scope.

3.2.1. Motivation

Imprecise requirements usually go along with stories
of grand scope, and large stories are difficult to es-
timate. Committing to such stories puts you in jeop-
ardy, because you promise to deliver something you
do not understand. Oftentimes the customer does not
understand such requirements, either. The normal
thing to happen is feature creep, i.e. the effort rises
while available time remains stable.

Another reason for such behavior might be an unre-
alistic schedule, mostly due to time pressure. In such
a situation it is best for you to try to save yourself
and hedge your bets.

3.2.2. Forces

• Large enterprises are the archetypical environ-
ment for projects of grand scale and unclearly
specified requirements.

• Imprecise requirements give way to feature
creep, which can jeopardize your release plan.

• Customers are usually imprecise; demanding
full precision does not often meet with sympa-
thy.

• Being vague allows you to change your mind
late.

• Customers usually demand you commit to
scope.

3.2.3. Implementation

Make the stories as small as possible. Try to make
sure the customer is readily available for clarifica-
tions. Move large stories to the next iteration or re-
lease. If you absolutely cannot avoid committing to a
requirements not understood, do not commit when
and to what detail you will deliver.

3.2.4. Example

When we talked to business representatives what
data and services they were interested in, the issue of
active notification (push technology) ranked very
high on the agenda.

3.2.5. Relations

Since you want to Do As the Romans Do it is less
wise to fight unrealistic schedules than to commit in
vague terms.



3.3. Explore the Limits
Try to go as far as you can, but not farther.

3.3.1. Motivation

The organisation puts limits on what you can do.
You cannot expect to have total freedom, but some
degree of liberty is necessary for you to do a decent
job. While some boundaries are set, others are not
clearly defined and you might be able to find a niche
to practice what you want to.

3.3.2. Forces

• You are unsure about how far you can go in
your organisation.

• You might discover that the limits are too tight
to achieve a reasonable amount of flexibility.

• The more Trust From the Organisation you re-
ceive, the farther they will allow you to go.

3.3.3. Implementation

Explore your limits carefully, step by step. Stay in
contact with the people who might

3.3.4. Example

For every release we bring into production we must
write an operation handbook. It is used by produc-
tion support to understand how to deal with day-to-
day problems like server crashes etc.

The handbook template alone is some 30 pages in
size. It contained numerous sections that did not
apply to our situation. It is very time-consuming to

write it and takes away valuable time you would
otherwise use for coding and testing.

We had to find out how much detail was required for
the handbook to be accepted by change control. Af-
ter the third attempt we were able to fine-tune the
level of detail so that acceptance was almost certain.

3.3.5. Relations

While exploring your limits, be careful not to abuse
the Trust From the Organisation you receive.

3.4. Know Your People, People Know You
Learn about their goals of people you depend upon
and let them know about yours.

3.4.1. Motivation

In a large organisation many things happen behind
the scenes. Unless you have been born in this envi-
ronment, you will not overlook (let alone under-
stand) all processes going on. Therefore your own
point of view will be unrealistic, and if you are unre-
alistic you will not act according to reality. This
might one day lead to clashes that cost time and
money.

3.4.2. Forces

• The organisation is big and you cannot expect
to fully understand it.

• You have to know the right people to under-
stand the processes properly.

• Most people are trying to be helpful at first en-
counter, but some are not.

Do As the Romans Do

Flexibility

Explore the Limits

Know Your People
People Know You

Trust From the
Organisation

in
cr

ea
se

s

yi
el

ds

builds

requires

builds

counteracts

tells you how to

Vagueness yields

counteracts

Figure 1: Relationships between practices easing and inhibiting the transition to XP in a large organisation. The
ultimate goal is flexibility, but getting there might require a sensitive tuning of the forces at work.



• Most people expect you are familiar with the
procedures, but you are very likely to not be.

3.4.3. Implementation

Find out who is important in the organisation or has
a good knowledge about it. If you run into problems,
try to contact these people as early as possible and
describe your problems to them. They will most
probably also describe theirs to you and try to help.

3.4.4. Example

Each time we contacted people in the architecture
department and asked questions, they were happy to
answer them. Apparently it is uncommon for people
to ask for advice in large organisations, be it because
of lack of knowledge or lack of appreciation.

One day we were faced with a seemingly simple
problem: adding the network address of database to
a configuration file to make it available to our tool,
just as other databases had been made available. We
went to ask production support, but they would not
grant us access to our configuration files. They said
we would have to file a change (and go through the
whole acceptance test procedure again).

On that day another colleague from production sup-
port happened to have a meeting with me. I asked
him: "What would you recommend?" To my biggest
surprise he mentioned that there is something known
as a "Informational Change". This type of change is
only filed so that production support knows what
happened in case problems occur. Otherwise they let
you apply the change without further tests. We hap-
pily filed the informational change request, and one
day later we could apply it.

3.4.5. Relations

When you Know Your People and People Know
You, it is much easier for others to gain trust in you.
It also becomes easier to Explore the Limits.

3.5. Trust From the Organisation
Make people trust you.

3.5.1. Motivation

If people don’t know you, they won’t trust you. They
will play not to lose instead of playing to win.

3.5.2. Forces

• The larger the organisation, the more people
have to know you.

• People will usually not approach you to help.

• People appreciate friendliness.

3.5.3. Implementation

Actively search close contact with the people you
depend upon. Ask them if what you do is alright in
their eyes. Let them review your work. Let them
know you appreciate their work. Say: "Thank You."

3.5.4. Example

We celebrate release parties not only among the
team, but also invite colleagues from other depart-
ments who took part in the effort. During these par-
ties people get to know each other personally. In our
experience you are treated completely different by
someone who knows you personally than by some-
one who only knows your mail address and phone
number. As a sign of our appreciation, we pay for
everything they consume at the party.

3.5.5. Relations

When you receive Trust From the Organisation,
flexibility rises substantially and you can Explore
the Limits easier.

4. Outlook
It should be pointed out that these recommendations
are, after all, based on anecdotal evidence. However,
we are pretty sure they will not make your life
harder. They worked well for us, and it is assumed
they can be applied in other large organisations as
well.

We have just begun to transition to the complete set
of extreme practices, and we are very careful in
adding more practices as our project continues. The
experience made so far suggests that it is possible to
establish a flexible software development process in
a hostile environment, but it takes its time.

References
1. Kent Beck: Embrace Change. Extreme Pro-

gramming Explained. Reading 1999 (Addison-
Wesley)

2. Dirk Riehle: A Comparison of the Value Sys-
tems of Adaptive Software Development and
Extreme Programming. In Proceedings of XP
2000, Cagliari, Italy


